






















TSC  Frontier & Fusion Area Unit

人工知能及びその関連技術の進展（全体版）

分類 現在～2020年 2020年～2030年 2030年以降

認識能力関係

• 静止画像・動画像からの一般物体認識が人間レベルに
到達

• 3次元情報からの環境認識が人間レベルに到達
• 人間の表情、感情の認識が人間レベルに到達

• 原始的シンボルグラウンディング問題の解決を背景に、
特定ドメインにおいて、文脈や背景知識を考慮した認識
が可能に

• スモールデータでの学習による認識が可能に

• 特定ドメインに限らず、一般ドメインにおいて、文化や社
会的背景などを考慮した認識が可能に（シンボルグラウ
ンディング問題の解決）

運動能力関係

• ディープラーニング（DL）と強化学習の融合が進化し、
人間が設定した報酬体系の下、高度なゲームなどのタス
クの遂行（プランニング）が人間レベルに到達

• 運動に関するプリミティブ、構造（オントロジー）を自動
生成する技術の確立

• スモールデータでの学習により、深い背景知識を必要と
するタスクの遂行が人間レベルに到達

• 人間の運動・モノの操作・動画像から概念階層を自動
で獲得（運動からの自動的なオントロジー獲得技術の
確立）

• 文化や社会的背景を必要とするタスクの遂行が人間レ
ベルに到達

• DL＋強化学習の進化により、剛体物マニピュレーション
制御のほか、柔軟物マニピュレーション制御を学習

• 安全マニピュレーション技術の確立
• ハードの進化とあわせて、さまざまな実用的タスクに対す
るマニピュレーション技術が確立

• マニピュレーション機能がモジュール化され、社会全体で
最適配置される

• 自律移動しながら3Dマップを生成し、周辺環境を構造
化

• 不整地等非構造化環境におけるロコモーション技術が
確立

• 安全ロコモーション技術の確立
• ハードの進化とあわせて、さまざまな実用的タスクに対す
るロコモーション技術が確立

• 移動が社会の中に組み込まれ、社会全体に移動ソ
リューションが提供される

言語・意味理解

• 画像とテキストを相互変換する原始的シンボルグラウン
ディング技術の確立

• マルチモーダルな情報、運動に関するプリミティブとテキス
トを相互変換する、より本格的なシンボルグラウンディン
グ技術の確立

• 人間の言語知識と、画像や運動を介したグラウンディン
グが融合し、大規模な知識獲得が可能に

• 特定ドメインにおいて、会話が成立するための発話計画
を自動で生成

• 原始的シンボルグラウンディング問題の解決を背景に、
新聞等のフォーマルなテキストの分類、情報検索、含意
関係認識等が人間レベルに到達

• 原始的シンボルグラウンディング問題の解決を背景に、
特定ドメインの機械翻訳が人間レベルに到達

• フォーマルなテキストに限らず、インフォーマルなテキストの
分類、情報検索、含意関係認識等が人間レベルに到
達

• 機械翻訳が人間レベルに到達
• 機械が仮説や要約を生成
• 音声対話が人間レベルに到達

数値データの処理、
人間やシステムのモ
デル化

• センサからの大量データの取得・活用が進む（IoT） • センサデータにより、社会の部分的最適化が可能に • 認識能力、運動能力、言語・意味理解能力の向上と
あいまって、社会全体の最適化が可能に

• 認知発達モデル、脳の情報処理の研究が加速 • 認知発達モデルが部分的に構築
• 脳の情報処理原理が部分的に解明

• 認知発達モデルが概ね構築
• 脳の情報処理原理が概ね解明

計算機システム等
の必要なハードウェ
ア

• ワンショット3D計測やハイパースペクトルカメラなどのセン
サ

• 省電力高性能小型プロセッサ
• 触覚センサなどセンサ類の高度化
• 高度マニピュレータ

• イジングモデル型デバイス
• スマートアクチュエータ
• あらゆるデバイスが超低消費電力駆動

• 人の脳にせまる脳型デバイス
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Quantum annealing with manufactured spins
M. W. Johnson1, M. H. S. Amin1, S. Gildert1, T. Lanting1, F. Hamze1, N. Dickson1, R. Harris1, A. J. Berkley1, J. Johansson2, P. Bunyk1,
E. M. Chapple1, C. Enderud1, J. P. Hilton1, K. Karimi1, E. Ladizinsky1, N. Ladizinsky1, T. Oh1, I. Perminov1, C. Rich1, M. C. Thom1,
E. Tolkacheva1, C. J. S. Truncik3, S. Uchaikin1, J. Wang1, B. Wilson1 & G. Rose1

Many interesting but practically intractable problems can be reduced
to that of finding the ground state of a system of interacting spins;
however, finding such a ground state remains computationally
difficult1. It is believed that the ground state of some naturally occur-
ring spin systems can be effectively attained through a process called
quantum annealing2,3. If it could be harnessed, quantum annealing
might improve on known methods for solving certain types of
problem4,5. However, physical investigation of quantum annealing
has been largely confined to microscopic spins in condensed-matter
systems6–12. Here we use quantum annealing to find the ground
state of an artificial Ising spin system comprising an array of eight
superconducting flux quantum bits with programmable spin–spin
couplings. We observe a clear signature of quantum annealing,
distinguishable from classical thermal annealing through the tem-
perature dependence of the time at which the system dynamics
freezes. Our implementation can be configured in situ to realize a
wide variety of different spin networks, each of which can be
monitored as it moves towards a low-energy configuration13,14.
This programmable artificial spin network bridges the gap between
the theoretical study of ideal isolated spin networks and the experi-
mental investigation of bulk magnetic samples. Moreover, with an
increased number of spins, such a system may provide a practical
physical means to implement a quantum algorithm, possibly allow-
ing more-effective approaches to solving certain classes of hard com-
binatorial optimization problems.

Physically interesting in their own right, systems of interacting spins
also have practical importance for quantum computation15. One
widely studied example is the Ising spin model, where spins may take
on one of two possible values: up or down along a preferred axis. Many
seemingly unrelated yet important hard problems, in fields ranging
from artificial intelligence16 to zoology17, can be reformulated as the
problem of finding the lowest energy configuration, or ground state, of
an Ising spin system.

Quantum annealing has been proposed as an effective way for find-
ing such a ground state2–5. To implement a processor that uses quantum
annealing to help solve difficult problems, we would need a program-
mable quantum spin system in which we could control individual
spins and their couplings, perform quantum annealing and then
determine the state of each spin. Until recently, physical investigation
of quantum annealing has been confined to configurations achievable
in condensed-matter systems, such as molecular nanomagnets6–10 or
bulk solids with quantum critical behaviour11,12. Unfortunately, these
systems cannot be controlled or measured at the level of individual
spins, and are typically investigated through the measurement of bulk
properties. They are not programmable. Nuclear magnetic resonance
techniques have been used to demonstrate a quantum annealing algo-
rithm on three quantum spins18. Recently, three trapped ions were
used to perform a quantum simulation of a small, frustrated Ising spin
system19.

One possible implementation of an artificial Ising spin system
involves superconducting flux quantum bits20–28 (qubits). We have

implemented such a spin system, interconnected as a bipartite graph,
using an in situ reconfigurable array of coupled superconducting flux
qubits14. The device fabrication is discussed in Methods and in Sup-
plementary Information. The simplified schematic in Fig. 1a shows
two superconducting loops in the qubit, each subject to an external flux
bias W1x or W2x, respectively. The device dynamics can be modelled as a
quantum mechanical double-well potential with respect to the flux, W1,
in loop 1 (Fig. 1b). The barrier height, dU, is controlled by W2x. The
energy difference between the two minima, 2h, is controlled by W1x.
The two lowest energy states of the system, corresponding to clockwise
or anticlockwise circulating current in loop 1, are labelled j#æ and j"æ,
with flux localized in the left- or the right-hand well (Fig. 1b), respec-
tively. If we consider only these two states (a valid restriction at low
temperature), the qubit dynamics is equivalent to those of an Ising
spin, and we treat the qubits as such in what follows. Qubits (spins) are

1D-Wave Systems Inc., 100-4401 Still Creek Drive, Burnaby, British Columbia V5C 6G9, Canada. 2Department of Natural Sciences, University of Agder, Post Box 422, NO-4604 Kristiansand, Norway.
3Department of Physics, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada.
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Figure 1 | Superconducting flux qubit. a, Simplified schematic of a
superconducting flux qubit acting as a quantum mechanical spin. Circulating
current in the qubit loop gives rise to a flux inside, encoding two distinct spin
states that can exist in a superposition. b, Double-well potential energy diagram
and the lowest quantum energy levels corresponding to the qubit. States |"æ
and |#æ are the lowest two levels, respectively. The intra-well energy spacing is
vp. The measurement detects magnetization, and does not distinguish between,
say, |"æ and excited states within the right-hand well. In practice, these
excitations are exceedingly improbable at the time the state is measured.
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lation function ^s3
zs6

z &c in the high-temperature side. At low
temperatures, on the other hand, the spins 4 and 5 tend to be
fixed in some definite direction and consequently the effec-
tive ferromagnetic interactions between spins 3 and 6 are
roughly twice as large as the direct antiferromagnetic inter-
action. This argument is justified by the positive value of the
correlation function at low temperatures in Fig. 6. Therefore
the spins 3 and 6 must change their relative orientation at
some intermediate temperature. This means that the free-
energy landscape goes under significant restructuring as the
temperature is decreased and therefore the annealing process
should be performed with sufficient care.
If the transverse field in QA plays a similar role to the

temperature in SA, we expect similar dependence of the cor-
relation function ^s3

zs6
z &q on the transverse field G . Here the

expectation value is evaluated by the stationary eigenfunc-
tion of the full Hamiltonian ~1! with the lowest eigenvalue at
a given G . The broken curve in Fig. 6 clearly supports this
idea. We therefore expect that the frustrated system of Fig. 5
is a good test ground for comparison of QA and SA in the
situation with a significant change of spin configurations in
the dynamical process of annealing.
The results are shown in Fig. 7 for the annealing schedule

G(t)5T(t)53/At . The time scale t is normalized as t
5tTc

2 in SA and t5tGc
2 in QA. The values, Tc and Gc , are

the points where the correlation functions vanish in Fig. 6.
Thus both classical and quantum correlation functions vanish
at t51. The tendency is clear that QA is better suited for
ground-state search in the present system.

C. Random interaction model

The third and final example is the Sherrington-Kirkpatrick
~SK! model of spin glasses @8#. Interactions exist between all
pairs of spins and are chosen from a Gaussian distribution
with vanishing mean and variance 1/N (N58 in our case!.
Figure 8 shows a typical result on the time evolution of the
probabilities under the annealing schedule G(t)5T(t)
53/At . We have checked several realizations of exchange
interactions under the same distribution function and have
found that the results are qualitatively the same. Figure 8
again suggests that QA is better suited than SA for the
present optimization problem.

IV. SOLUTION OF THE SINGLE-SPIN PROBLEM

It is possible to solve the time-dependent Schrödinger
equation explicitly when the problem involves only a single
spin and the functional form of the transverse field is G(t)
52ct ,c/t , or c/At . We note that the single-spin problem is
trivial in SA because there are only two states involved ~up
and down! and thus there are no local minima. This does not
mean that the same single-spin problem is also trivial in the
quantum mechanical version. In QA with a single spin, the

FIG. 5. The frustrated model where the solid lines denote ferro-
magnetic interactions and the broken line is for an antiferromag-
netic interaction.

FIG. 6. Correlation functions of spins 3 and 6 in Fig. 5 for the
classical and quantum cases. In the classical model ~full line! the
correlation is shown as a function of temperature while the quantum
case ~dotted line! is regarded as a function of the transverse field.

FIG. 7. Time dependence of the overlaps of the frustrated model
under G(t)5T(t)53/At . Here the time scale t is normalized by Gc
and Tc ~the points where the correlation functions vanish in Fig. 6!.

FIG. 8. Time dependence of the overlaps for the SK model with
G(t)5T(t)53/At .
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and spares regions for the second problem “semi-random”. The optimal route

of the third problem has an “H” shape. (we call this problem “H-character”

hereafter.) The fourth problem is “ulysses16” of TSPLIB [48]. The number

of cities is N = 16 for all the problems.

The cities are located on a square with the side length
√

N to make the

length of the tour extensive for “random”, “semi-random” and “H-character”.

For “ulysses16”, we re-scale dij and set the average to 2.2. The average,

the dispersion and the ratio of the dispersion and the average are shown in

Table 4.1.

Figure 4.6: Optimal tours of the four problems.

Simulations are performed with 500 Trotter slices for QA and 100 inde-

pendent runs for SA. We observe two quantities, the probability to find the

minimum-length P (t) and the average of length ⟨L⟩. The probability P (t) is

obtained from the ratio of the number of the ground state configurations for

each time in 100 independent runs for SA and 500 Trotter slice for QA. The

probabilities of SA and QA for the four problems with the 10/
√

t scheduling

are plotted in Fig. 4.7 and the energy values are in Fig. 4.8. The plots are
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Many interesting but practically intractable problems can be reduced
to that of finding the ground state of a system of interacting spins;
however, finding such a ground state remains computationally
difficult1. It is believed that the ground state of some naturally occur-
ring spin systems can be effectively attained through a process called
quantum annealing2,3. If it could be harnessed, quantum annealing
might improve on known methods for solving certain types of
problem4,5. However, physical investigation of quantum annealing
has been largely confined to microscopic spins in condensed-matter
systems6–12. Here we use quantum annealing to find the ground
state of an artificial Ising spin system comprising an array of eight
superconducting flux quantum bits with programmable spin–spin
couplings. We observe a clear signature of quantum annealing,
distinguishable from classical thermal annealing through the tem-
perature dependence of the time at which the system dynamics
freezes. Our implementation can be configured in situ to realize a
wide variety of different spin networks, each of which can be
monitored as it moves towards a low-energy configuration13,14.
This programmable artificial spin network bridges the gap between
the theoretical study of ideal isolated spin networks and the experi-
mental investigation of bulk magnetic samples. Moreover, with an
increased number of spins, such a system may provide a practical
physical means to implement a quantum algorithm, possibly allow-
ing more-effective approaches to solving certain classes of hard com-
binatorial optimization problems.

Physically interesting in their own right, systems of interacting spins
also have practical importance for quantum computation15. One
widely studied example is the Ising spin model, where spins may take
on one of two possible values: up or down along a preferred axis. Many
seemingly unrelated yet important hard problems, in fields ranging
from artificial intelligence16 to zoology17, can be reformulated as the
problem of finding the lowest energy configuration, or ground state, of
an Ising spin system.

Quantum annealing has been proposed as an effective way for find-
ing such a ground state2–5. To implement a processor that uses quantum
annealing to help solve difficult problems, we would need a program-
mable quantum spin system in which we could control individual
spins and their couplings, perform quantum annealing and then
determine the state of each spin. Until recently, physical investigation
of quantum annealing has been confined to configurations achievable
in condensed-matter systems, such as molecular nanomagnets6–10 or
bulk solids with quantum critical behaviour11,12. Unfortunately, these
systems cannot be controlled or measured at the level of individual
spins, and are typically investigated through the measurement of bulk
properties. They are not programmable. Nuclear magnetic resonance
techniques have been used to demonstrate a quantum annealing algo-
rithm on three quantum spins18. Recently, three trapped ions were
used to perform a quantum simulation of a small, frustrated Ising spin
system19.

One possible implementation of an artificial Ising spin system
involves superconducting flux quantum bits20–28 (qubits). We have

implemented such a spin system, interconnected as a bipartite graph,
using an in situ reconfigurable array of coupled superconducting flux
qubits14. The device fabrication is discussed in Methods and in Sup-
plementary Information. The simplified schematic in Fig. 1a shows
two superconducting loops in the qubit, each subject to an external flux
bias W1x or W2x, respectively. The device dynamics can be modelled as a
quantum mechanical double-well potential with respect to the flux, W1,
in loop 1 (Fig. 1b). The barrier height, dU, is controlled by W2x. The
energy difference between the two minima, 2h, is controlled by W1x.
The two lowest energy states of the system, corresponding to clockwise
or anticlockwise circulating current in loop 1, are labelled j#æ and j"æ,
with flux localized in the left- or the right-hand well (Fig. 1b), respec-
tively. If we consider only these two states (a valid restriction at low
temperature), the qubit dynamics is equivalent to those of an Ising
spin, and we treat the qubits as such in what follows. Qubits (spins) are

1D-Wave Systems Inc., 100-4401 Still Creek Drive, Burnaby, British Columbia V5C 6G9, Canada. 2Department of Natural Sciences, University of Agder, Post Box 422, NO-4604 Kristiansand, Norway.
3Department of Physics, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada.
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Figure 1 | Superconducting flux qubit. a, Simplified schematic of a
superconducting flux qubit acting as a quantum mechanical spin. Circulating
current in the qubit loop gives rise to a flux inside, encoding two distinct spin
states that can exist in a superposition. b, Double-well potential energy diagram
and the lowest quantum energy levels corresponding to the qubit. States |"æ
and |#æ are the lowest two levels, respectively. The intra-well energy spacing is
vp. The measurement detects magnetization, and does not distinguish between,
say, |"æ and excited states within the right-hand well. In practice, these
excitations are exceedingly improbable at the time the state is measured.

1 9 4 | N A T U R E | V O L 4 7 3 | 1 2 M A Y 2 0 1 1

Macmillan Publishers Limited. All rights reserved©2011

LETTER
doi:10.1038/nature10012

Quantum annealing with manufactured spins
M. W. Johnson1, M. H. S. Amin1, S. Gildert1, T. Lanting1, F. Hamze1, N. Dickson1, R. Harris1, A. J. Berkley1, J. Johansson2, P. Bunyk1,
E. M. Chapple1, C. Enderud1, J. P. Hilton1, K. Karimi1, E. Ladizinsky1, N. Ladizinsky1, T. Oh1, I. Perminov1, C. Rich1, M. C. Thom1,
E. Tolkacheva1, C. J. S. Truncik3, S. Uchaikin1, J. Wang1, B. Wilson1 & G. Rose1
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to that of finding the ground state of a system of interacting spins;
however, finding such a ground state remains computationally
difficult1. It is believed that the ground state of some naturally occur-
ring spin systems can be effectively attained through a process called
quantum annealing2,3. If it could be harnessed, quantum annealing
might improve on known methods for solving certain types of
problem4,5. However, physical investigation of quantum annealing
has been largely confined to microscopic spins in condensed-matter
systems6–12. Here we use quantum annealing to find the ground
state of an artificial Ising spin system comprising an array of eight
superconducting flux quantum bits with programmable spin–spin
couplings. We observe a clear signature of quantum annealing,
distinguishable from classical thermal annealing through the tem-
perature dependence of the time at which the system dynamics
freezes. Our implementation can be configured in situ to realize a
wide variety of different spin networks, each of which can be
monitored as it moves towards a low-energy configuration13,14.
This programmable artificial spin network bridges the gap between
the theoretical study of ideal isolated spin networks and the experi-
mental investigation of bulk magnetic samples. Moreover, with an
increased number of spins, such a system may provide a practical
physical means to implement a quantum algorithm, possibly allow-
ing more-effective approaches to solving certain classes of hard com-
binatorial optimization problems.

Physically interesting in their own right, systems of interacting spins
also have practical importance for quantum computation15. One
widely studied example is the Ising spin model, where spins may take
on one of two possible values: up or down along a preferred axis. Many
seemingly unrelated yet important hard problems, in fields ranging
from artificial intelligence16 to zoology17, can be reformulated as the
problem of finding the lowest energy configuration, or ground state, of
an Ising spin system.

Quantum annealing has been proposed as an effective way for find-
ing such a ground state2–5. To implement a processor that uses quantum
annealing to help solve difficult problems, we would need a program-
mable quantum spin system in which we could control individual
spins and their couplings, perform quantum annealing and then
determine the state of each spin. Until recently, physical investigation
of quantum annealing has been confined to configurations achievable
in condensed-matter systems, such as molecular nanomagnets6–10 or
bulk solids with quantum critical behaviour11,12. Unfortunately, these
systems cannot be controlled or measured at the level of individual
spins, and are typically investigated through the measurement of bulk
properties. They are not programmable. Nuclear magnetic resonance
techniques have been used to demonstrate a quantum annealing algo-
rithm on three quantum spins18. Recently, three trapped ions were
used to perform a quantum simulation of a small, frustrated Ising spin
system19.

One possible implementation of an artificial Ising spin system
involves superconducting flux quantum bits20–28 (qubits). We have

implemented such a spin system, interconnected as a bipartite graph,
using an in situ reconfigurable array of coupled superconducting flux
qubits14. The device fabrication is discussed in Methods and in Sup-
plementary Information. The simplified schematic in Fig. 1a shows
two superconducting loops in the qubit, each subject to an external flux
bias W1x or W2x, respectively. The device dynamics can be modelled as a
quantum mechanical double-well potential with respect to the flux, W1,
in loop 1 (Fig. 1b). The barrier height, dU, is controlled by W2x. The
energy difference between the two minima, 2h, is controlled by W1x.
The two lowest energy states of the system, corresponding to clockwise
or anticlockwise circulating current in loop 1, are labelled j#æ and j"æ,
with flux localized in the left- or the right-hand well (Fig. 1b), respec-
tively. If we consider only these two states (a valid restriction at low
temperature), the qubit dynamics is equivalent to those of an Ising
spin, and we treat the qubits as such in what follows. Qubits (spins) are
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Many interesting but practically intractable problems can be reduced
to that of finding the ground state of a system of interacting spins;
however, finding such a ground state remains computationally
difficult1. It is believed that the ground state of some naturally occur-
ring spin systems can be effectively attained through a process called
quantum annealing2,3. If it could be harnessed, quantum annealing
might improve on known methods for solving certain types of
problem4,5. However, physical investigation of quantum annealing
has been largely confined to microscopic spins in condensed-matter
systems6–12. Here we use quantum annealing to find the ground
state of an artificial Ising spin system comprising an array of eight
superconducting flux quantum bits with programmable spin–spin
couplings. We observe a clear signature of quantum annealing,
distinguishable from classical thermal annealing through the tem-
perature dependence of the time at which the system dynamics
freezes. Our implementation can be configured in situ to realize a
wide variety of different spin networks, each of which can be
monitored as it moves towards a low-energy configuration13,14.
This programmable artificial spin network bridges the gap between
the theoretical study of ideal isolated spin networks and the experi-
mental investigation of bulk magnetic samples. Moreover, with an
increased number of spins, such a system may provide a practical
physical means to implement a quantum algorithm, possibly allow-
ing more-effective approaches to solving certain classes of hard com-
binatorial optimization problems.

Physically interesting in their own right, systems of interacting spins
also have practical importance for quantum computation15. One
widely studied example is the Ising spin model, where spins may take
on one of two possible values: up or down along a preferred axis. Many
seemingly unrelated yet important hard problems, in fields ranging
from artificial intelligence16 to zoology17, can be reformulated as the
problem of finding the lowest energy configuration, or ground state, of
an Ising spin system.

Quantum annealing has been proposed as an effective way for find-
ing such a ground state2–5. To implement a processor that uses quantum
annealing to help solve difficult problems, we would need a program-
mable quantum spin system in which we could control individual
spins and their couplings, perform quantum annealing and then
determine the state of each spin. Until recently, physical investigation
of quantum annealing has been confined to configurations achievable
in condensed-matter systems, such as molecular nanomagnets6–10 or
bulk solids with quantum critical behaviour11,12. Unfortunately, these
systems cannot be controlled or measured at the level of individual
spins, and are typically investigated through the measurement of bulk
properties. They are not programmable. Nuclear magnetic resonance
techniques have been used to demonstrate a quantum annealing algo-
rithm on three quantum spins18. Recently, three trapped ions were
used to perform a quantum simulation of a small, frustrated Ising spin
system19.

One possible implementation of an artificial Ising spin system
involves superconducting flux quantum bits20–28 (qubits). We have

implemented such a spin system, interconnected as a bipartite graph,
using an in situ reconfigurable array of coupled superconducting flux
qubits14. The device fabrication is discussed in Methods and in Sup-
plementary Information. The simplified schematic in Fig. 1a shows
two superconducting loops in the qubit, each subject to an external flux
bias W1x or W2x, respectively. The device dynamics can be modelled as a
quantum mechanical double-well potential with respect to the flux, W1,
in loop 1 (Fig. 1b). The barrier height, dU, is controlled by W2x. The
energy difference between the two minima, 2h, is controlled by W1x.
The two lowest energy states of the system, corresponding to clockwise
or anticlockwise circulating current in loop 1, are labelled j#æ and j"æ,
with flux localized in the left- or the right-hand well (Fig. 1b), respec-
tively. If we consider only these two states (a valid restriction at low
temperature), the qubit dynamics is equivalent to those of an Ising
spin, and we treat the qubits as such in what follows. Qubits (spins) are
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of the spins, respectively, and the biases hi and couplings
Jij encode a particular optimization problem. The time-
dependent variation of Δ and E is parametrized by s≡ t=tf
with time t ∈ ½0; tf" and total run (anneal) time tf. QA is
performed by first setting Δ ≫ E, which results in a ground
state into which the spins can be easily initialized [6]. Then
Δ is reduced and E is increased until E ≫ Δ. At this point,
the system Hamiltonian is dominated by HP, which
represents the encoded optimization problem. At the end
of the evolution, a ground state ofHP represents the lowest
energy configuration for the problem Hamiltonian and thus
a solution to the optimization problem.

III. QUANTUM ANNEALING PROCESSOR

We have built a processor that implements HS using
superconducting flux qubits as effective spins [6,7,23,24].
Figure 1(a) shows a photograph of the processor. Figure 1(c)
shows the circuit schematic of a pair of flux qubits with the
magnetic flux controls Φx

qi and Φx
ccjj. The annealing param-

eter s is controlled with the global bias Φx
ccjjðtÞ (see

Appendix A for the mapping between s and Φx
ccjj and a

description of how Φx
qi is provided for each qubit). The

strength and sign of the inductive coupling between pairs of
qubits is controlled with magnetic fluxΦx

co;ij that is provided
by an individual on-chip digital-to-analog converter for
each coupler [8]. The parameters hi and Jij are thus in situ
tunable, thereby allowing the encoding of a vast number of
problems. The time-dependent energy scales ΔðsÞ and EðsÞ
are calculated from measured qubit parameters and plotted
in Fig. 1(d). We calibrate and correct the individual flux
qubit parameters in our processor to ensure that every qubit
has a close-to-identical Δ and E (the energy gap Δ is
balanced to better than 8% between qubits and E to better
than 5%). See Appendix A for measurements of these
energy scales. The interqubit couplers are calibrated as
described in Ref. [25]. The processor we study here is
mounted on the mixing chamber of a dilution refrigerator
held at temperature T ¼ 12.5 mK.

IV. FERROMAGNETICALLY COUPLED
INSTANCES

The experiments reported herein focus on one of the
eight-qubit unit cells of the larger QA processor as
indicated in Fig. 1(a). The unit cell is isolated by setting
all couplings outside of that subsection to Jij ¼ 0 for all
experiments. We then pose specific HP instances with
strong ferromagnetic (FM) coupling Jij ¼ −2.5 and hi ¼ 0
to that unit cell, as illustrated in Figs. 1(e) and 1(f). These
configurations produce coupled two- and eight-qubit sys-
tems, respectively. The Hamiltonian (1) describes the
behavior of these systems during QA.
Typical observations of entanglement in the quantum

computing literature involve applying interactions between

FIG. 1. (a) Photograph of the QA processor used in this
study. We report measurements performed on the eight-qubit
unit cell indicated. The bodies of the qubits are extended
loops of Nb wiring (highlighted with red rectangles). Inter-
qubit couplers are located at the intersections of the qubit
bodies. (b) Electron micrograph showing the cross section of
a typical portion of the processor circuitry (described in more
detail in Appendix A). (c) Schematic diagram of a pair of
coupled superconducting flux qubits with external control
biases Φx

qi and Φx
ccjj and with flux through the body of the ith

qubit denoted as Φqi. An inductive coupling between the
qubits is tuned with the bias Φx

co;ij. (d) Energy scales ΔðsÞ
and EðsÞ in Hamiltonian (1) calculated from a rf SQUID
model based on the median of independently measured device
parameters for these eight qubits. See Appendix A for more
details. (e),(f) The two- and eight-qubit systems studied were
programmed to have the topologies shown. Qubits are
represented as gold spheres, and interqubit couplers, set to
J ¼ −2.5, are represented as silver lines.
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of the spins, respectively, and the biases hi and couplings
Jij encode a particular optimization problem. The time-
dependent variation of Δ and E is parametrized by s≡ t=tf
with time t ∈ ½0; tf" and total run (anneal) time tf. QA is
performed by first setting Δ ≫ E, which results in a ground
state into which the spins can be easily initialized [6]. Then
Δ is reduced and E is increased until E ≫ Δ. At this point,
the system Hamiltonian is dominated by HP, which
represents the encoded optimization problem. At the end
of the evolution, a ground state ofHP represents the lowest
energy configuration for the problem Hamiltonian and thus
a solution to the optimization problem.

III. QUANTUM ANNEALING PROCESSOR

We have built a processor that implements HS using
superconducting flux qubits as effective spins [6,7,23,24].
Figure 1(a) shows a photograph of the processor. Figure 1(c)
shows the circuit schematic of a pair of flux qubits with the
magnetic flux controls Φx

qi and Φx
ccjj. The annealing param-

eter s is controlled with the global bias Φx
ccjjðtÞ (see

Appendix A for the mapping between s and Φx
ccjj and a

description of how Φx
qi is provided for each qubit). The

strength and sign of the inductive coupling between pairs of
qubits is controlled with magnetic fluxΦx

co;ij that is provided
by an individual on-chip digital-to-analog converter for
each coupler [8]. The parameters hi and Jij are thus in situ
tunable, thereby allowing the encoding of a vast number of
problems. The time-dependent energy scales ΔðsÞ and EðsÞ
are calculated from measured qubit parameters and plotted
in Fig. 1(d). We calibrate and correct the individual flux
qubit parameters in our processor to ensure that every qubit
has a close-to-identical Δ and E (the energy gap Δ is
balanced to better than 8% between qubits and E to better
than 5%). See Appendix A for measurements of these
energy scales. The interqubit couplers are calibrated as
described in Ref. [25]. The processor we study here is
mounted on the mixing chamber of a dilution refrigerator
held at temperature T ¼ 12.5 mK.

IV. FERROMAGNETICALLY COUPLED
INSTANCES

The experiments reported herein focus on one of the
eight-qubit unit cells of the larger QA processor as
indicated in Fig. 1(a). The unit cell is isolated by setting
all couplings outside of that subsection to Jij ¼ 0 for all
experiments. We then pose specific HP instances with
strong ferromagnetic (FM) coupling Jij ¼ −2.5 and hi ¼ 0
to that unit cell, as illustrated in Figs. 1(e) and 1(f). These
configurations produce coupled two- and eight-qubit sys-
tems, respectively. The Hamiltonian (1) describes the
behavior of these systems during QA.
Typical observations of entanglement in the quantum

computing literature involve applying interactions between
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study. We report measurements performed on the eight-qubit
unit cell indicated. The bodies of the qubits are extended
loops of Nb wiring (highlighted with red rectangles). Inter-
qubit couplers are located at the intersections of the qubit
bodies. (b) Electron micrograph showing the cross section of
a typical portion of the processor circuitry (described in more
detail in Appendix A). (c) Schematic diagram of a pair of
coupled superconducting flux qubits with external control
biases Φx

qi and Φx
ccjj and with flux through the body of the ith

qubit denoted as Φqi. An inductive coupling between the
qubits is tuned with the bias Φx

co;ij. (d) Energy scales ΔðsÞ
and EðsÞ in Hamiltonian (1) calculated from a rf SQUID
model based on the median of independently measured device
parameters for these eight qubits. See Appendix A for more
details. (e),(f) The two- and eight-qubit systems studied were
programmed to have the topologies shown. Qubits are
represented as gold spheres, and interqubit couplers, set to
J ¼ −2.5, are represented as silver lines.
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Quantum annealing with manufactured spins
M. W. Johnson1, M. H. S. Amin1, S. Gildert1, T. Lanting1, F. Hamze1, N. Dickson1, R. Harris1, A. J. Berkley1, J. Johansson2, P. Bunyk1,
E. M. Chapple1, C. Enderud1, J. P. Hilton1, K. Karimi1, E. Ladizinsky1, N. Ladizinsky1, T. Oh1, I. Perminov1, C. Rich1, M. C. Thom1,
E. Tolkacheva1, C. J. S. Truncik3, S. Uchaikin1, J. Wang1, B. Wilson1 & G. Rose1

Many interesting but practically intractable problems can be reduced
to that of finding the ground state of a system of interacting spins;
however, finding such a ground state remains computationally
difficult1. It is believed that the ground state of some naturally occur-
ring spin systems can be effectively attained through a process called
quantum annealing2,3. If it could be harnessed, quantum annealing
might improve on known methods for solving certain types of
problem4,5. However, physical investigation of quantum annealing
has been largely confined to microscopic spins in condensed-matter
systems6–12. Here we use quantum annealing to find the ground
state of an artificial Ising spin system comprising an array of eight
superconducting flux quantum bits with programmable spin–spin
couplings. We observe a clear signature of quantum annealing,
distinguishable from classical thermal annealing through the tem-
perature dependence of the time at which the system dynamics
freezes. Our implementation can be configured in situ to realize a
wide variety of different spin networks, each of which can be
monitored as it moves towards a low-energy configuration13,14.
This programmable artificial spin network bridges the gap between
the theoretical study of ideal isolated spin networks and the experi-
mental investigation of bulk magnetic samples. Moreover, with an
increased number of spins, such a system may provide a practical
physical means to implement a quantum algorithm, possibly allow-
ing more-effective approaches to solving certain classes of hard com-
binatorial optimization problems.

Physically interesting in their own right, systems of interacting spins
also have practical importance for quantum computation15. One
widely studied example is the Ising spin model, where spins may take
on one of two possible values: up or down along a preferred axis. Many
seemingly unrelated yet important hard problems, in fields ranging
from artificial intelligence16 to zoology17, can be reformulated as the
problem of finding the lowest energy configuration, or ground state, of
an Ising spin system.

Quantum annealing has been proposed as an effective way for find-
ing such a ground state2–5. To implement a processor that uses quantum
annealing to help solve difficult problems, we would need a program-
mable quantum spin system in which we could control individual
spins and their couplings, perform quantum annealing and then
determine the state of each spin. Until recently, physical investigation
of quantum annealing has been confined to configurations achievable
in condensed-matter systems, such as molecular nanomagnets6–10 or
bulk solids with quantum critical behaviour11,12. Unfortunately, these
systems cannot be controlled or measured at the level of individual
spins, and are typically investigated through the measurement of bulk
properties. They are not programmable. Nuclear magnetic resonance
techniques have been used to demonstrate a quantum annealing algo-
rithm on three quantum spins18. Recently, three trapped ions were
used to perform a quantum simulation of a small, frustrated Ising spin
system19.

One possible implementation of an artificial Ising spin system
involves superconducting flux quantum bits20–28 (qubits). We have

implemented such a spin system, interconnected as a bipartite graph,
using an in situ reconfigurable array of coupled superconducting flux
qubits14. The device fabrication is discussed in Methods and in Sup-
plementary Information. The simplified schematic in Fig. 1a shows
two superconducting loops in the qubit, each subject to an external flux
bias W1x or W2x, respectively. The device dynamics can be modelled as a
quantum mechanical double-well potential with respect to the flux, W1,
in loop 1 (Fig. 1b). The barrier height, dU, is controlled by W2x. The
energy difference between the two minima, 2h, is controlled by W1x.
The two lowest energy states of the system, corresponding to clockwise
or anticlockwise circulating current in loop 1, are labelled j#æ and j"æ,
with flux localized in the left- or the right-hand well (Fig. 1b), respec-
tively. If we consider only these two states (a valid restriction at low
temperature), the qubit dynamics is equivalent to those of an Ising
spin, and we treat the qubits as such in what follows. Qubits (spins) are

1D-Wave Systems Inc., 100-4401 Still Creek Drive, Burnaby, British Columbia V5C 6G9, Canada. 2Department of Natural Sciences, University of Agder, Post Box 422, NO-4604 Kristiansand, Norway.
3Department of Physics, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada.
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Figure 1 | Superconducting flux qubit. a, Simplified schematic of a
superconducting flux qubit acting as a quantum mechanical spin. Circulating
current in the qubit loop gives rise to a flux inside, encoding two distinct spin
states that can exist in a superposition. b, Double-well potential energy diagram
and the lowest quantum energy levels corresponding to the qubit. States |"æ
and |#æ are the lowest two levels, respectively. The intra-well energy spacing is
vp. The measurement detects magnetization, and does not distinguish between,
say, |"æ and excited states within the right-hand well. In practice, these
excitations are exceedingly improbable at the time the state is measured.
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D-Wave のプログラミング
例題：全結合イジング模型をD-Wave の量子ビットネットワーク上 
　　　にマップ (キメラ構造)
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FIG. 4. Time to find the optimal solution with 99% prob-
ability for di↵erent problem sizes. We compare Simulated
Annealing (SA), Quantum Monte Carlo (QMC) and the D-
Wave 2X. To assign a runtime for the classical algorithms we
take the number of spin updates (for SA) or worldline updates
(for QMC) that are required to reach a 99% success proba-
bility and multiply that with the time to perform one update
on a single state-of-the-art core. Shown are the 50th, 75th
and 85th percentiles over a set of 100 instances. It occupied
millions of processor cores for several days to tune and run
the classical algorithms for these benchmarks. The runtimes
for the higher quantiles for the largest problem size for QMC
were not computed due to the high computational cost.

model, the discrete QMC classical Hamiltonian is

H
cl

= �
MX
⌧=1

0@X
kj

J
ij

M
�
j

(⌧)�
j

k(⌧)

+J?(s)
X
j

�
j

(⌧)�
j

(⌧ + 1)

1A , (9)

where �
j

(⌧) = ±1 are classical spins, j, k are site indices,
⌧ is a replica index, and M is the number of replicas.
The coupling between replicas is given by

J?(s) = � 1

2�
ln tanh

A(s)�

M
, (10)

where � is the inverse temperature. The configurations
for a given spin j across all replicas ⌧ is called the world-
line of spin j [34]. We used continuous path integral
QMC, which corresponds to the limit �⌧ ! 0 [35], and,
unlike discrete path integral QMC, does not su↵er from
discretization errors of order 1/M .

We numerically compute the number of sweeps n
sweeps

required for QMC to find the ground state with 99%
probability at di↵erent quantiles. In our case, a sweep
corresponds to two update attempts for each worldline.
The computational e↵ort is n

sweeps

⇥N⇥T
worldline

, where

N is the number of qubits and T
worldline

is the time to up-
date a wordline. We average T

worldline

over all the steps
in the quantum annealing schedule; however the value
of T

wordline

depends on the particular schedule chosen.
As explained above for SA, we report the total computa-
tional e↵ort of QMC in standard units of time per single
core. For the annealing schedule used in the current D-
Wave 2X processor, we find

T
wordline

= � ⇥ 870 ns (11)

using an Intel(R) Xeon(R) CPU E5-1650 @ 3.20GHz.
This study is designed to explore the utility of QMC

as a classical optimization routine. Accordingly, we op-
timize QMC by running at a low temperature, 4.8 mK.
We also observe that QMC with open boundary condi-
tions (OBC) performs better than standard QMC with
periodic boundary conditions in this case [26]; therefore,
OBC is used in this comparison. We further optimize the
number of sweeps per run which, for a given quantile, re-
sults in the lowest total computational e↵ort. We find
that the optimal number of sweeps is 106 at the largest
problem size. This enhances the ability of QMC to simu-
late quantum tunneling, and gives a very high probability
of success per run in the median case, p

success

= 0.16.
All the qubits in a cluster have approximately the same

orientation in each local minima of the e↵ective mean-
field potential. Neighboring local minima typically cor-
respond to di↵erent orientations of a single cluster. To-
tal spin is conserved during the corresponding instanton
trajectory, as in the simplified situation explained in the
introduction, Eq. (34). Here, tunneling time is domi-
nated by a single purely imaginary instanton. It was
recently demonstrated that, in this situation, the expo-
nent a

min

/~ for physical tunneling is identical to that of
QMC [26]. As seen in Fig. 4, we do not find a substan-
tial di↵erence in the scaling of QMC and D-Wave (QA).
However, we find a very substantial computational over-
head associated with the prefactor B in the expression
T = BeDamin/~ for the runtime. In other words, B

QMC

can exceed B
QA

by many orders of magnitude. The role
of the prefactor becomes essential in situations where the
number of cotunneling qubits D is finite, i.e., is inde-
pendent of the problem size N (or depends on N very
weakly). Between some quantiles and system sizes we
observe a prefactor advantage as high as 108.

C. D-Wave versus other Classical Solvers

Based on the results presented here, one cannot claim
a quantum speedup for D-Wave 2X, as this would require
that the quantum processor in question outperforms the
best known classical algorithm. This is not the case for
the weak-strong cluster networks. This is because a va-
riety of heuristic classical algorithms can solve most in-
stances of Chimera structured problems much faster than
SA, QMC, and the D-Wave 2X (for a possible exception
see [36]) [37]. For instance, the Hamze-de Freitas-Selby
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Figure 2: Top panel: computational scaling (for 99% success)
for di↵erent classical algorithms compared with the experi-
mental results using the DW2X chip [49]. As one can see,
both general classical algorithms [isoenergetic cluster moves
(ICM) either using parallel tempering (PT) or replica Monte
Carlo (RMC)] and tailored classical algorithms for the weak-
strong cluster model [hybrid cluster moves (HCM), super-spin
approximation (SS), Hamze-de-Freitas-Selby (HFS)] have a
comparable scaling with the quantum inspired classical algo-
rithm [quantum Monte Carlo (QMC)] and the DW2X device.
[74]. Moreover, for the classical tailored algorithms, the overall
scaling prefactor is also comparable with the DW2X device.
For HCM, random instances with no broken qubits have been
used. Bottom panel: Analysis of the scaling factors by us-
ing either linear regression, or a log-corrected regression for
log

10

T
ann

. In the figure, bars represent the confidence inter-
vals. For the scaling analysis, we used a stretched exponential
that fits better the numerical data (see Appendix A). Interest-
ingly, the general-purposes classical algorithm ICM, together
with the chimera-optimized classical algorithm (HFS) and the
cluster optimized algorithms (HCM and SS) have the best
scaling. (QMC and SA data taken from Ref. [49]). All the
simulations (excluding HCM) have been run on the same
instances used in [49].

To better understand the scaling behavior of the
DW2X for the weak-strong cluster model, we compare its
scaling with the scaling behavior of a noisy two-energy
level model with a fixed (linear) schedule and a non-
optimal annealing time. More precisely, we use the fol-

lowing Hamiltonian [7]

H
2LV

(t) = �(1 � t/T

ann

) | ih | � t/T

ann

|!ih!| , (10)

where T

ann

is the total annealing time, and | i and |!i
are the equal superposition of all the states and the target
states one wants to find, respectively. The system in
Equation (10) can be reduced to an e↵ective 2 ⇥ 2 matrix
and then, it can be exactly solved [7, 75]. To simulate
the presence of local noise, we assume that each spin has
a probability q to be oriented in the wrong direction after
the annealing of the system [75]. Therefore, the e↵ective
noisy Hamiltonian has a probability equal to (1�q)n that
its ground state !0 is e↵ectively the desired target state !.
Assuming that the level of noise is small enough compared
to the probability of success p

succ

(n, T

ann

) of the perfect
annealer (namely, when T

ann

is much larger than the
optimal annealing time), the probability of success of the
noisy two-energy level Hamiltonian can be written as:

p

0

succ

(n, T

ann

, q) = (1 � q)np

succ

(n, T

ann

). (11)

Figure 3 shows the comparison between the computational
scaling T

tts

for the DW2X chip [49] and the two-energy
level model described above (for the numerical details,
see Section G). For the latter, the computational scaling
is expressed in arbitrary units in order to ease the com-
parison. As expected, the ideal two-energy level model
without noise (2LV, q = 0) has a plateau for small systems
and, only for large systems, the computational time shows
the asymptotic scaling. When the noise is added to the
two-energy level model (2LV, q = 0.1) a “double scaling”
phenomenon appears: for small systems, the scaling is
dominated by the noise while, for large systems, the scal-
ing is dominated by the asymptotic scaling. Interestingly,
the same phenomenon can be clearly observed for the
DW2X scaling, indicating that the total annealing time
of 20 µs is non-optimal for systems up to

p
400 spins.

C. Analysis of the energy landscape

An important ingredient in assessing the value of weak-
strong cluster problems to detect quantum speedup is
to study in detail the dominant characteristics of the
energy landscape. In Refs. [32, 79] it was shown that
the structure of the overlap distribution of spin glasses
[43, 44] mirrors salient features in the energy landscape.
Because there is no spatial order in spin glasses, “order” is
measured by comparing two copies of the system with the
same disorder, but simulated with independent Markov
chains. The spin overlap is defined as

q =
1

n

nX

j=1

�

z,↵
j �

z,�
j , (12)

where the sum is over all sites n on the network and ↵

and � represent the two copies of the system. For a given
set of disorder J

C

⌘ J , the overlap distribution P (q) will
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この局所解から脱出するために，ランダムにスピンの状
態を破壊する。実際には，図3に示すスピン回路内のvar
信号に乱数列を注入し，乱数列の値が「1」の場合にはス
ピン回路内の反転論理回路によって更新するスピンの値を
反転させ，図4の点線のように関係ない状態にランダムに
遷移させる。この2つの動作を合わせてCMOSアニーリ
ングと呼ぶ。これにより，できるだけエネルギーが低い状
態を見つけることができる。
実際には，乱数を用いているため，必ずしも最適な解が
求まるとは限らない。しかし，このコンピューティング技
術を社会システムの最適化に使う場合には，必ずしも最適
値でなくても許容できると考えられる。例えば，物流の経
路を求める際に，経路全体の値が多少長くなってもシステ
ム最適化の観点から見れば許容可能であると考えられる。
実際に，このコンピューティング技術を用いる際には，例
えば90％以上の可能性で99％以上の精度で解が求まると
いうことを理論的に保証することで，この技術で得られた
解をシステムに用いても問題ないことを保証するという使
い方が考えられる。

5.　プロトタイプ計算機
提案したイジングコンピューティングを実証するため
に，65 nmのCMOSプロセスを用いてイジングチップを
試作した。さらにこのイジングチップを搭載した試作機を
作成し，最適化問題が解けることを確認した。本章ではそ
の試作機とそれを用いて最適化問題を解いた結果について
説明する。

5.1　イジングチップ
65 nmの半導体CMOSプロセスを用いてイジングチッ

プを試作した。チップ写真を図5に示す。3 mm×4 mmの
チップ内に20k（＝2万）スピンを搭載した。1スピンのサ

イズは，11.27 µm×23.94 µm≒270 µm2である。外部から
スピンおよび相互作用係数を書き込み／読み出しするため
のインタフェース回路は100 MHzで動作する。また，ス
ピン値を更新する相互作用動作も100 MHzで動作する。
このイジングチップでは，図6の上に示すように二次元
の格子状のイジングモデルが2層接続された三次元のイジ
ングモデルが搭載されている。同図の下に示すように，三

スピンの状態（2nパターン）

エ
ネ
ル
ギ
ー
　（
評
価
指
標
）

H

最適解

n ： スピン数

図4│ イジングモデルのエネルギープロファイルとCMOSアニーリング
イジングコンピューティングでは，スピン間の相互作用によってエネルギー
はエネルギープロファイルに従って減少する（実線矢印）が局所解に固定され
る可能性がある。乱数を入力してわざとスピン値を反転させる（破線矢印）こ
とで局所解への固定を避ける。このCMOS（Complementary Metal Oxide 
Semiconductor）アニーリングという動作により，なるべくエネルギーの低い
解が求まる。
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図6│搭載したイジングモデルのトポロジと対応するメモリ構成
二次元のイジングモデルが積層された三次元イジングモデルが二次元の半導
体メモリ上に配置され，高いスケーラビリティを実現している。

注：略語説明　IO（Input/Output）
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図5│イジングチップ写真
3 mm×4 mm＝12 mm2の中に20k個のスピンが搭載されている。

注：略語説明　I/F（Interface）





 



















組合せ最適化処理に向けた革新的アニーリングマシン䛾研究開発

委託予定先

概要

（株）日立製作所、産業技術総合研究所、理化学研究所、情報・システム研究機構、早稲田大学

物流䛾経路最適化やロボット䛾動作最適制御など、IoTで䛾システムを最適制御するに䛿組合せ最適化
問題と呼䜀れる問題を解く必要があります。しかし、システム䛾規模が大きくなると、従来型䛾計算機で
䛿組合せ数が爆発的に増加し答えを求めることが難しくなります。それに対処するため、アニーリングマ
シンと呼䜀れる計算機が提案されています。本プロジェクトで䛿、CMOSおよび量子アニーリングマシンと
呼䜀れる2種類䛾アニーリングマシンについて、実用化に必要な大規模化・高性能化技術䛾開発に取り
組みます。さらに、アニーリングマシンを使用する際に必須となる問題マッピング等䛾基盤技術䛾開発を
行います。

問題規模

計
算
時
間
・
消
費
電
力

アニーリングマシン
（本開発）

指数関数的爆発！

ノイマン型計算機
（従来）

ハードウェア革新
による劇的な改善

組合せ最適化問題の例:
巡回セールスマン問題

都市

経路A

経路B

最
適
化
指
標

実用解

①CMOSアニーリングマシン

経路A 経路B

②量子アニーリングマシン
最
適
化
指
標

実用解

量子効果による全空間探索

量子トンネル

経路A 経路B
③共通基盤技術

実際の問題をアニーリングマシンにマッピングする技術、等
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